34,661 research outputs found

    Cost-Effective Cache Deployment in Mobile Heterogeneous Networks

    Full text link
    This paper investigates one of the fundamental issues in cache-enabled heterogeneous networks (HetNets): how many cache instances should be deployed at different base stations, in order to provide guaranteed service in a cost-effective manner. Specifically, we consider two-tier HetNets with hierarchical caching, where the most popular files are cached at small cell base stations (SBSs) while the less popular ones are cached at macro base stations (MBSs). For a given network cache deployment budget, the cache sizes for MBSs and SBSs are optimized to maximize network capacity while satisfying the file transmission rate requirements. As cache sizes of MBSs and SBSs affect the traffic load distribution, inter-tier traffic steering is also employed for load balancing. Based on stochastic geometry analysis, the optimal cache sizes for MBSs and SBSs are obtained, which are threshold-based with respect to cache budget in the networks constrained by SBS backhauls. Simulation results are provided to evaluate the proposed schemes and demonstrate the applications in cost-effective network deployment

    Blue Phosphorene Oxide: Strain-tunable Quantum Phase Transitions and Novel 2D Emergent Fermions

    Full text link
    Tunable quantum phase transitions and novel emergent fermions in solid state materials are fascinating subjects of research. Here, we propose a new stable two-dimensional (2D) material, the blue phosphorene oxide (BPO), which exhibits both. Based on first-principles calculations, we show that its equilibrium state is a narrow-bandgap semiconductor with three bands at low energy. Remarkably, a moderate strain can drive a semiconductor-to-semimetal quantum phase transition in BPO. At the critical transition point, the three bands cross at a single point at Fermi level, around which the quasiparticles are a novel type of 2D pseudospin-1 fermions. Going beyond the transition, the system becomes a symmetry-protected semimetal, for which the conduction and valence bands touch quadratically at a single Fermi point that is protected by symmetry, and the low-energy quasiparticles become another novel type of 2D double Weyl fermions. We construct effective models characterizing the phase transition and these novel emergent fermions, and we point out several exotic effects, including super Klein tunneling, supercollimation, and universal optical absorbance. Our result reveals BPO as an intriguing platform for the exploration of fundamental properties of quantum phase transitions and novel emergent fermions, and also suggests its great potential in nanoscale device applications.Comment: 23 pages, 5 figure
    • …
    corecore